Rechnernetze & Verteilte Systeme

Ludwig-Maximilians-Universität München Sommersemester 2018

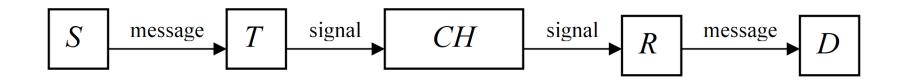
Prof. Dr. D. Kranzlmüller,
M.Sc. P. Jungblut, M.Sc. R. Kowalewski

Hardwarenahe Schichten

ISO/OSI-Schichten 1 und 2
Bitübertragungs- und Sicherungsschicht
(Engl. Physical Layer and Data Link Layer)

Inhalt

- 1. Bitübertragungsschicht (ISO/OSI-Schicht 1)
 - Übertragungsmedien
 - Codierung und Modulation
- 2. MAC-Teilschicht (ISO/OSI-Schicht 2a)
 - Vielfachzugriffsverfahren: CSMA, MACA
- 3. LLC-Teilschicht (ISO/OSI-Schicht 2b)
 - Bit-Fehler Erkennung


1,2, oder 3 Schichten?

- Im Internet-Modell: unterhalb der Vermittlungsschicht eine einzige Schicht:
 - Netzzugangsschicht (engl. link layer)
- Im ISO/OSI-Modell: zwei Schichten:
 - Schicht 1: Bitübertragungsschicht (engl. physical layer)
 - Schicht 2: Sicherungsschicht (engl. data link layer)
- Bei Bedarf: Teilung der Sicherungsschicht (ISO/OSI-Schicht
 2) in zwei Teilschichten:
 - Schicht 2a: MAC-Teilschicht (engl. Medium Access Control)
 - Schicht 2b: LLC-Teilschicht (engl. Logical Link Control)
- Alle kümmern sich um die Übertragung von Daten über ein einzelnes Wegstück

Systemsicht

Kommunikationssystem nach Shannon (1948):

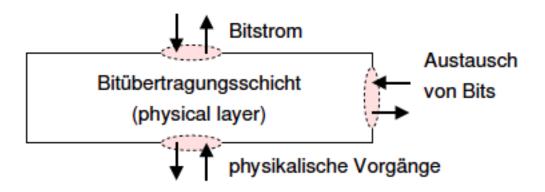
S Source

T Transmitter

CH Channel

R Receiver

D Destination


Bitübertragungsschicht (Engl. Physical Layer)

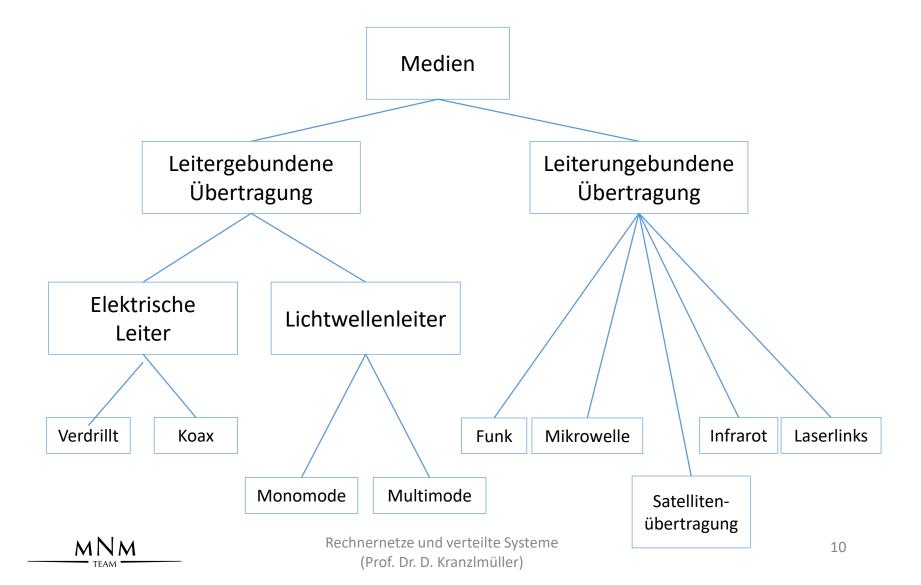
Übertragungsmedien, Codierung und Modulation

Überblick: Bitübertragungsschicht (1/2)

- Transparente Übertragung von Bits via Data Circuits
 - SDU = 1 Bit (seriell), n Bits (parallel)
 - Kodierung von Bits in physikalische Signale

Überblick: Bitübertragungsschicht (2/2)

- Protokoll legt Eigenschaften fest
 - physikalisch: Medien, Signale
 - mechanisch: PIN-Gestaltung, Steckerkonfiguration
 - funktional: PIN-Belegung, Takt
 - prozedural: Ablauf der Elementarereignisse, Bedeutung
- Merkmale der Schicht 1
 - Übertragungsrate: Funktion von
 - Spektrum: Frequenzbereich des Senders
 - Bandbreite: Frequenzbereich des Mediums
 - Codierung
 - Fehlerrate: Bitfehlerrate aufgrund von Dämpfung, Rauschen, Dispersion
 - Ausbreitungsverzögerung: abhängig von Material und Länge



Übertragungsmedien

Elektrische Leiter, Lichtwellenleiter, leiterungebundene Übertragung

Klassifizierung der Übertragungsmedien

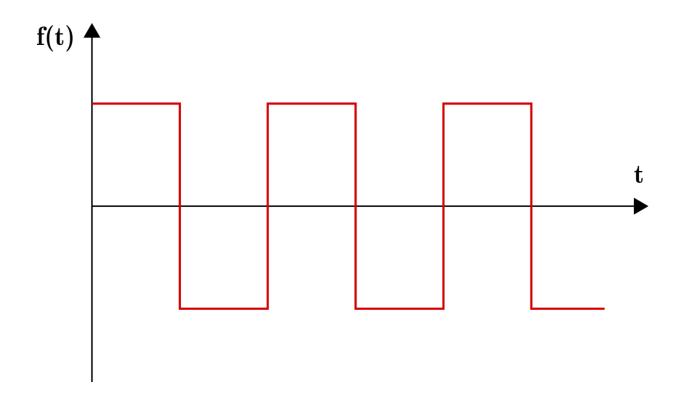
Wichtige Aspekte und Grundbegriffe zu Übertragungsmedien

- erzielbare maximale Übertragungsrate
- überbrückbare Entfernung
- Mediumspezifische Charakteristika:
 - Impedanz
 - Brechungsindex
- Mediumspezifische Störeinflüsse:
 - Dämpfung
 - Übersprechen
 - Skineffekt (Stromverdrängung)
 - Modendispersion
 - Wetter

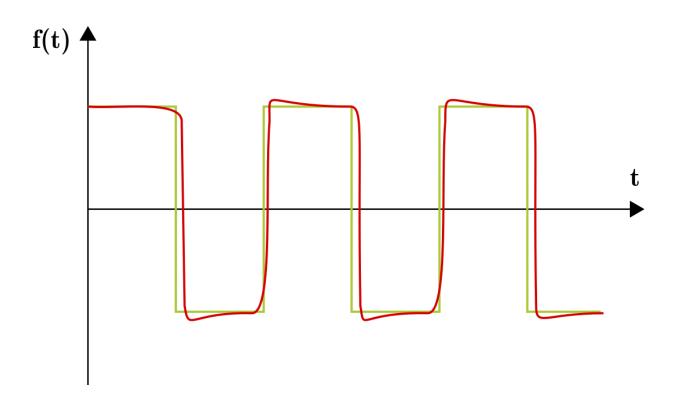
Übertragungsmedien: Durchsatz und Bitfehlerrate

Leitergebunden		
Medium	typischer Durchsatz	typische Bitfehlerrate
Elektrisch (Verdrillt)	1 KBit/s – 10 GBit/s	10-8
Elektrisch (Koax)	1 MBit/s – 100 MBit/s	10 ⁻¹⁰
LWL (Monomode)	100 GBit/s – 1 PBit/s	10 ⁻¹³
LWL (Multimode)	10 GBit/s – 100 TBit/s	10 ⁻¹²
Leiterungebunden		
Funk	10 KBit/s - 100 KBit/s	10 ⁻⁶
Mikrowelle	10 MBit/s – 1 GBit/s	10-8
Infrarot	10 KBit/s – 1 TBit/s	10-8

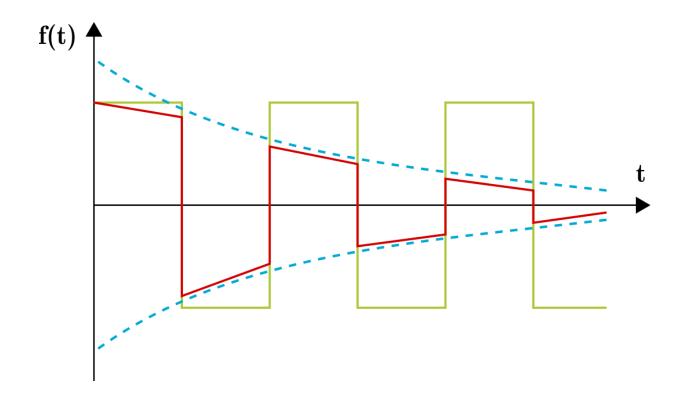
- Dämpfung: Verhältnis Ausgangsleistung zu Eingangsleistung
 - frequenzabhängig, wächst exponentiell mit Länge, d.h. linear in dB.
 - hängt stark vom Aufbau des Mediums (z.B. Querschnitt, Temperatur, spez.
 Widerstand, Material), Betriebsfrequenz, Temperatur ab
 - Kompensation: Verstärker
- Verzerrung: Wegen frequenzabhängiger Laufzeit und amplitudenabhängiger Dämpfung werden Impulse verzerrt und interferieren.
- Laufzeit: hängt ab vom Aufbau des Mediums, Frequenz, Länge
- **Störungen, Rauschen**: Rauschen unvermeidbar (Physik), Störungen durch Reflexionen, Einkoppeln fremder Signale (cross-talk, EM-Verträglichkeit), Wetter



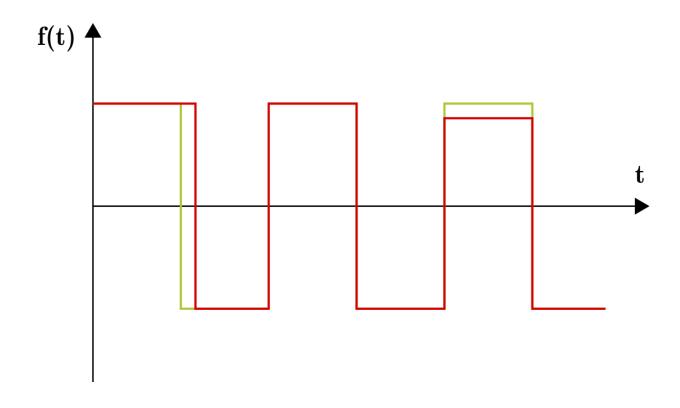
Elektrische Leiter (1/2)


- Elektrische Ladung wird in metallischen Leitern übertragen (Kupferlegierungen, Gold, Silber, Platin) in Form von verdrillten Kabeln oder Koaxialkabeln
- Verhalten einer Leitung beschreibbar durch Grundeigenschaften
 - Widerstand R [Ohm]
 - Induktivität L [Henry]
 - Kapazität C [Farad]
- Grundgrößen abhängig von Abmessungen der Leitung, Hülle, Material, Betriebsfrequenz, Temperatur

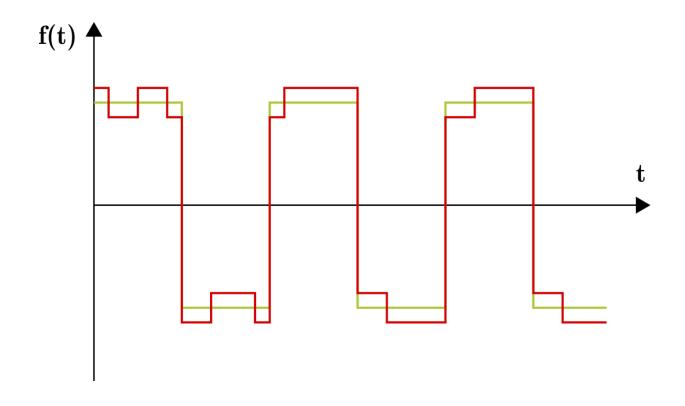
Signal ohne Einflüsse durch Medium

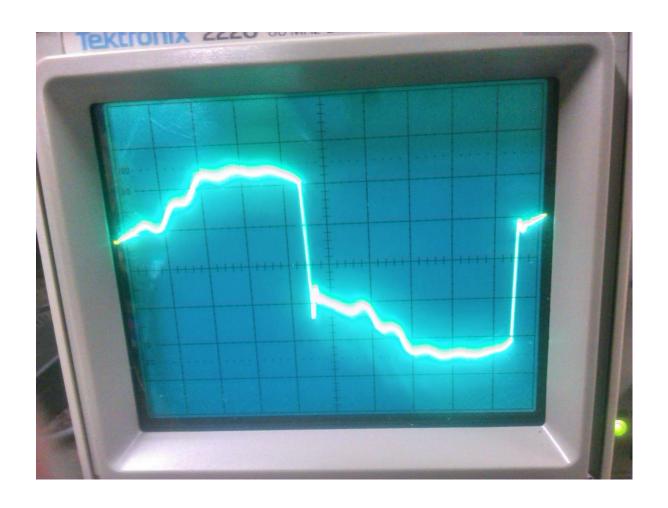


Impedanz, Bandbreitenbeschränkung

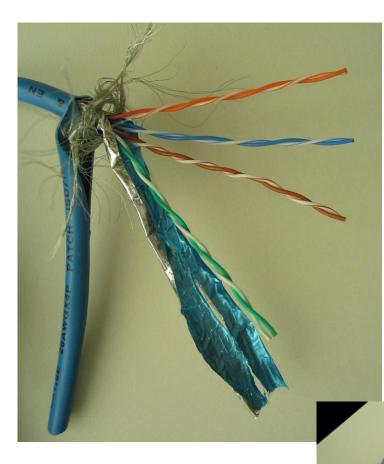


Dämpfung



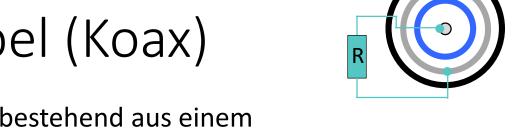

Verzerrung

Übersprechen



Elektrische Leiter: Störeinflüsse und Lösungsansätze

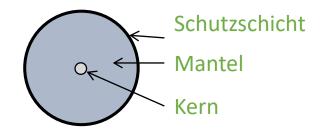
- Nebensprechen
 - → Verdrillung, Abschirmung
- Ein-/Ausstrahlung
 - → Abschirmung
- Reflexionen (Fehlanpassung, falscher Abschluss)
 - → richtige Anpassung, Abschlüsse
- Erdschleifen (Potenzialdifferenz)
 - → Erdung
- Skin-Effekt (ab 20 kHz)
 - → beschichtete Oberflächen


Elektrische Leiter: Verdrillte Kabel (Engl. Twisted Pair)

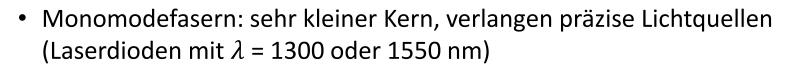
- Screened Foiled Twisted Pair
 - mehrere verdrillte Aderpaare
 - Schirmung (Folie + Geflecht)
 - "Patch-Kabel"
- Verdrillung
 - verhindert Ein- bzw. Abstrahlung
 - Art und Dichte der Verdrillung beeinflusst Schutzwirkung
- Bilder: S/FTP CAT5 (derzeit übliches Medium)

Elektrische Leiter: Koaxialkabel (Koax)

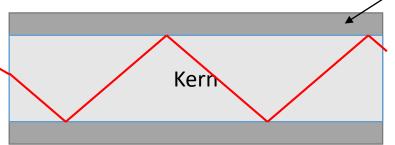
- Zweipolige Kabel, bestehend aus einem Innenleiter, der in konstantem Abstand von einem hohlzylindrischen Außenleiter umgeben ist.
- Der Außenleiter schirmt den Innenleiter vor Störstrahlung ab
 - unempfindlich gegen Interferenz
- Bilder: 10Base2 (z.B. bei Ethernet)



Lichtwellenleiter

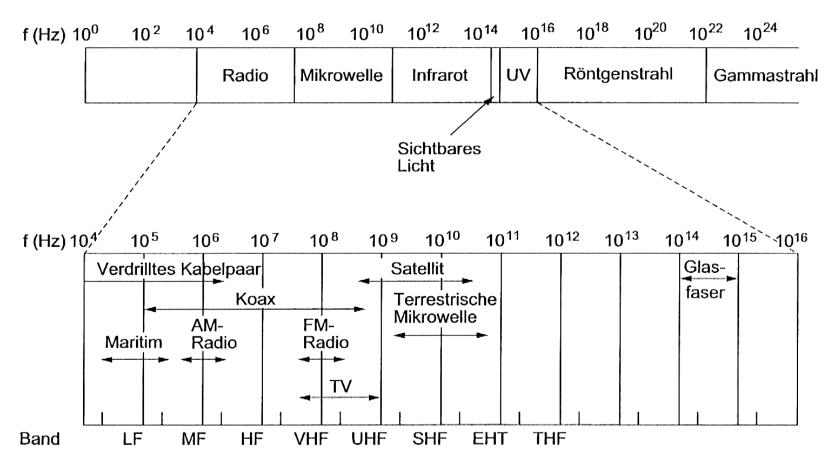


- Aufbau Lichtwellenleiter
 - Kern (hohe optische Dichte)
 - Mantel (geringere optische Dichte)
 - Schutzschicht (Kunststoff)
- Bilder
 - LWL-Paare (für Hin- und Rückweg)
 - ST-Stecker (links), SC-Stecker (r)
 - Beleuchtet mit Laser oder LED
- Resistent gegen elektromagnetische Interferenz
- Abhörsicher(er)



Lichtwellenleiter: Moden

- Moden sind Wege, die das Licht in einer Faser nehmen kann.
- Moden sind abhängig von
 - Lichtspektrum (Wellenlängen)
 - Einstrahlwinkel
 - Brechzahlprofil


- Multimodefasern: Stufenindex, Gradientenindex (häufiger)
- Störeinflüsse:
 - Modendispersion,
 - Materialdispersion

Mantel

Das Elektromagnetische Spektrum und seine Verwendung

Quelle: Tanenbaum, Computernetzwerke

Codierung und Modulation

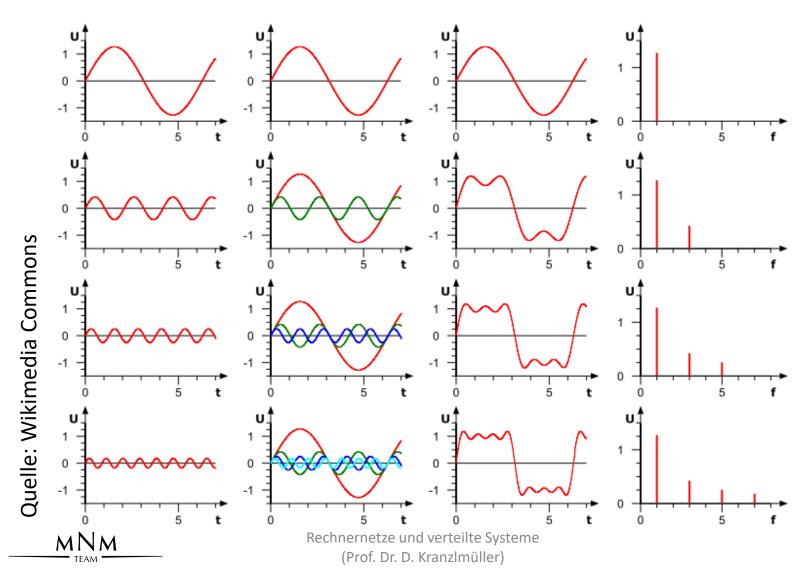
Daten und Signale, Bandbreite, Abtasttheorem, Nyquist und Shannon, Codierungsverfahren

Begriffsklärung: Daten und Signale

- Daten: Strukturen zur Ableitung (semantischer) Information.
 - sind bearbeitbar, speicherbar, transportierbar (als Nachrichten)
 - **Digitale/Diskrete Daten**: Strukturen (Folgen) von Zeichen (Elemente endlicher Mengen), z.B. Bit, Bytes, Zeichen, Zahlen.
 - Analoge Daten: kontinuierliche Funktionen (der Zeit, des Ortes),
 z.B. Sprache, Musik, Bewegtbild
- Signale: physikalische Darstellung von Daten
 - durch akustische, optische, elektrische, elektromagnetische Größen
 - analog Signale sind kontinuierliche Funktionen der Zeit
 - digital diskrete Signalfolgen, Impulse

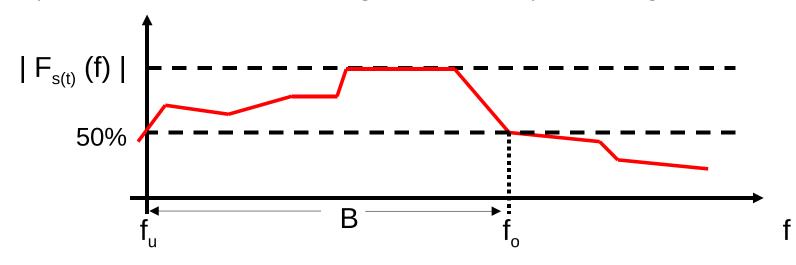
Fourierdarstellung von Signalen

Analoge Signale werden allgemein als Wellen übertragen:


$$s(t) = A_0 \cdot \sin(2\pi f t + \Theta)$$

- Maximale Amplitude A_0 , Frequenz f, Phasenverschiebung Θ
- s(t) ist periodische Funktion, s(t) = s(t+T) mit Periode T = 1/f
- Periodische Funktionen können als Summe von Sinus- und Cosinustermen angenähert werden, man spricht von ihrer Fourierdarstellung:

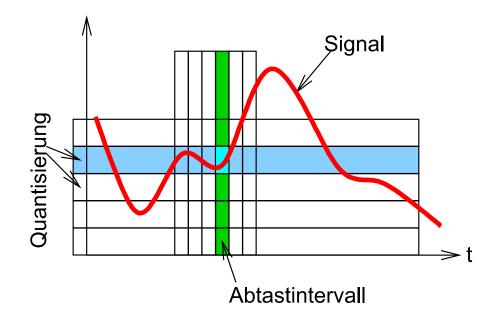
$$s_n(t) = \frac{a_0}{2} + \sum_{k=0}^{n} a_k \cos(2\pi k f t) + \sum_{k=0}^{n} b_k \sin(2\pi k f t)$$


Fourierdarstellung von Signalen

Der Bandbreiten-Begriff

Bandbreite des Signals: Differenz zwischen max. und min. Frequenz im Signalverlauf

Bandbreite des Mediums: Frequenzbereich, der ohne wesentliche Verzerrung übertragen werden kann. Die oberen und unteren Grenzfrequenzen sind dadurch gegeben, dass die außen liegenden Frequenzen unter 50% der leistungsstärksten Frequenzen liegen.

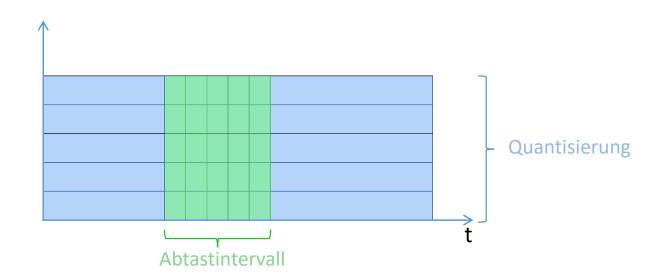

Abtasttheorem

Das Theorem (verlustfrei):

$$S \ge 2 \cdot F$$

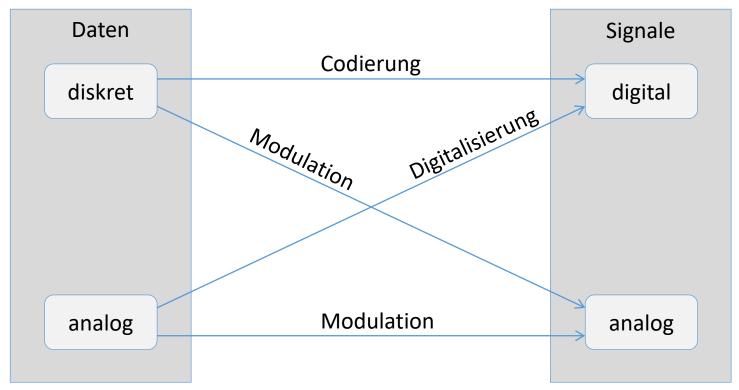
S: Abtasthäufigkeit

F: Höchste Frequenz der analogen Information



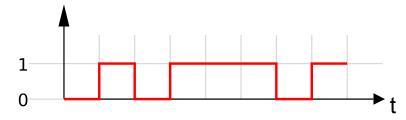
Beispiel: Digitale Übertragung analoger Sprache bei ISDN

- Verfahren: Pulscode-modulation (PCM)
- Telefon-Bandbreite: (300-3400 Hz), gerundet 4kHz;
 - → somit Abtastrate 8kHz, d.h. alle 125 μs
- Quantisierung: 256 Werte, Codierung 1 Byte
 - → resultiert erforderliche Rate 64 kbit/s

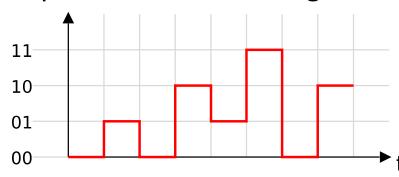


Abtastung (Animation)

Übergänge zwischen Daten und Signalen

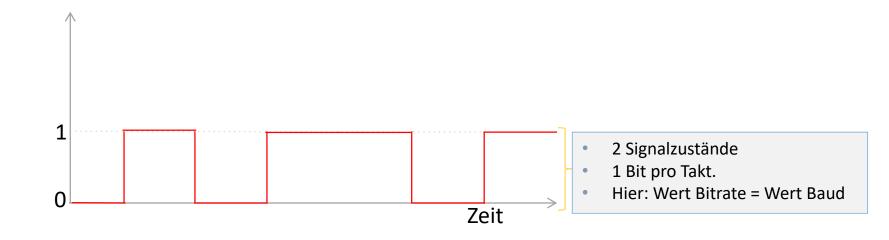

- Diskretisierung (Abtasttheorem betrifft Zeitachse)
- Quantisierung (betrifft Zerlegung der Werteachse)
- Codierung (Darstellung der Wertemenge)

Bitrate vs. Baudrate


- Bitrate: Anzahl der übertragenen Bits pro Sekunde
- Baud: Anzahl der Signalschritte (Wechsel der Signalwerte) pro Sekunde

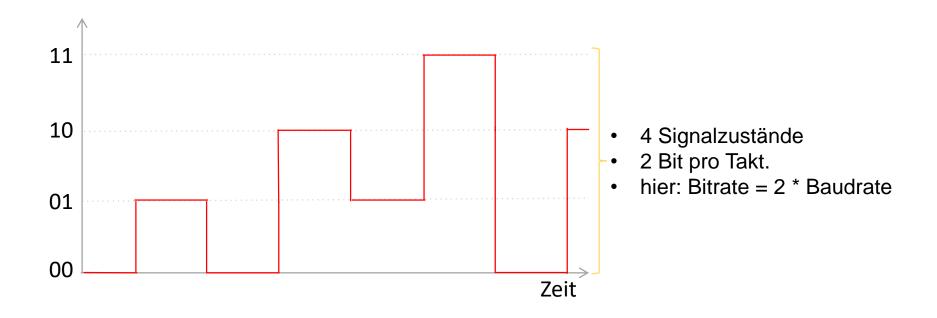
Bsp.: 2-Stufencodierung

- 2 Signalzustände/Symbole
- 1 Bit pro Takt
- Bitrate = Baudrate


Bsp.: 4-Stufencodierung

- 4 Signalzustände/Symbole
- 2 Bit pro Takt
- Bitrate = 2 · Baudrate

Beispiel: 2-Stufencodierung


Übertragene Bits: 0101101

Anzahl der übertragenen Bits: 8

Anzahl der Signalwechsel:

Beispiel: 4-Stufencodierung

Übertragene Bits: 00 01 00 10 01 11 00 10

Anzahl der übertragenen Bits: 16

Anzahl der Signalwechsel: 7

Gesetz von Nyquist

 Das Gesetz von Nyquist gibt die maximale Symbolrate C für einen rauschfreien Kanal mit Bandbreite B:

$$C = 2 \cdot B$$
 [Baud]

• Datenrate bei Symbolen mit M Zuständen

$$C = 2 \cdot B \cdot \log_2 M$$
 [Bit/s]

- Beispiel: Telefon mit $B=3100~\mathrm{Hz}$
 - Binäres Signal: $C = 2 \cdot 3100 \text{ Hz} \cdot \log_2 2 = 6200 \text{ Bit/s}$
 - Codierung AM-PSK (8 Stufen): $C = 2 \cdot 3100 \text{ Hz} \cdot \log_2 8 = 18600 \text{ Bit/s}$

Gesetz von Shannon

• Datenrate C_{sh} für einen Kanal **mit Rauschen** und Bandbreite B:

$$C_{sh} = B \cdot \log_2(1 + \frac{s}{N})$$
 [Bit/s]

- S Signalenergie, N Rauschenergie, S/N Rauschabstand
- Rauschabstand wird häufig in Dezibel [dB] angegeben:

$$SNR [dB] = 10 \cdot \log_{10}(\frac{S}{N})$$
 Signal-to-Noise-Ratio

- Beispiele
 - $S/N = 1000 \Rightarrow SNR = 30$ dB
 - $SNR = 20 dB \Rightarrow S/N = 100$
- Beispiel: Telefon, B=3000Hz SNR=20dB $\Rightarrow C_{sh}\approx 3000$ Hz $\cdot \log_2(1+100)\approx 19963$ Bit/s

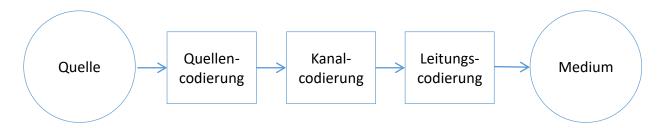
Weitere Gesetzmäßigkeiten

 Zeitgesetz: Für ein gegebenes Medium gelten Frequenz- und Längenrestriktionen

> Zeit · Bandbreite = Konstante Länge · Bandbreite = Konstante

- Beispiel Gradientenfaser:
 - Auf gegebenem Medium können z.B.
 400 MHz über 1 km oder 1 GHz über 400 m übertragen werden.
- Beispiel Gigabit-Ethernet:

Monomode 1300nm : 2km


Multimode 850nm: 500m

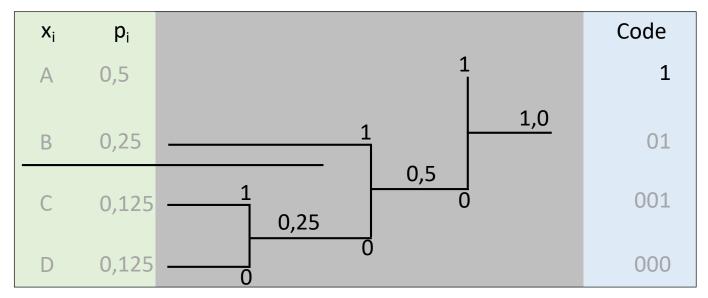
• Koax: 25m

STP Kat 5: 100m

Codierungsverfahren

Codierungsverfahren in einem Kommunikationssystem

- Quellencodierung: Ziel Redundanzreduktion (verlustfrei, verlustbehaftet)
 - Entropiecodierung (Lauflängen, Huffmann, arithmetisch)
 - Quellencodierung (Prädiktion, Transformation z.B. FFT, DCT)
 - Hybrid (JPEG, MPEG, H.263)
- Kanalkodierung: Erkennung und Korrektur von Fehlern
- Leitungscodierung: Zuordnung Bits zu Signalelementen


Beispiel: Lauflängencodierung

- Run Length Encoding (RLE)
- ist verlustfrei!
- Beispiel 1: (vereinfacht)
 - AAAAAA → (6A)
 - d.h. aus 6 Byte werden 2 Byte
- Beispiel 2:
 - 000000001110101111111011101
 - \rightarrow (8)(3)(1)(1)(1)(6)(1)(3)(1)(1)
 - wird z.B. bei BMP-/PCX-Grafik, JPEG, und FAX verwendet

Beispiel: Huffmann-Codierung

- Zeichen eines Datenstroms werden Codes verschiedener Länge zugewiesen
- Häufigste Zeichen bekommen kürzesten Code (Prinzip Morsealphabet)

Quelle: Michael Heinz, Humboldt-Universität zu Berlin

Beispiel: BACADABA → 01100110001011



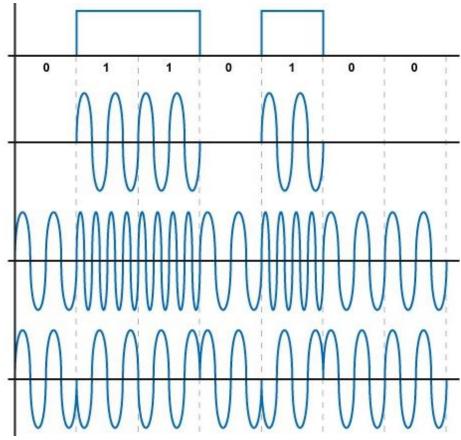
Leitungscodierung

- Leitungscodierung: Darstellen von Bitfolgen durch medienspezifische physikalische Signalwerte
- Kriterien
 - benötigte Bandbreite des Signals
 - Taktgenerierbarkeit aus Datenfolge (Selbsttaktung)
 - Gleichspannungsanteil. Viele Leitungen übertragen niederfrequenten Teil schlecht
- Unterschied zwischen Schrittbreite und Bitbreite, z.B.
 - Manchester: 1/2 Bit pro Schritt (z.B. bei klassischem Ethernet)
 - Non-Return-to-Zero (NRZ): 1 Bit pro Schritt
 - quaternär: 2 Bit pro Schritt
 - Gruppencodes

Codierungsbeispiele (Grafik)

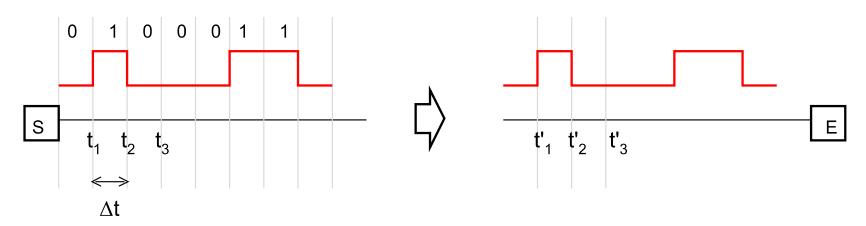
Modulation: Prinzip

Der Träger ist eine sinusförmige Schwingung, somit können Amplitude, Frequenz, oder Phase durch das aufzuprägende Signal verändert (moduliert) werden.


Signal

Amplituden Modulation

Frequenz Modulation


Phasen Modulation

Synchrone Übertragung

 Alle Binärzeichen liegen in einem festen Zeitraster, und zwischen Sender und Empfänger besteht dauernd Synchronismus (Schrittgleichlauf).

Konstant

Signallaufzeit, Dauer des Binärsignals d.h.

Asynchrone Übertragung

- Synchronität besteht nur für die Binärzeichen einer Übertragungszeichenfolge.
- Verschiedene Folgen müssen nicht im gleichen Zeitraster liegen.
- Beispiel Start-Stop-Übertragung bei zeichenorientierten Prozeduren
- Für jedes Zeichen (n Bits) wird
 - mittels Startbits ($1\frac{1}{2}$, 2 Bits) neu synchronisiert und
 - mittels Stopbits (1, $1\frac{1}{2}$, 2 Bits) Ruhestellung erzeugt.

Schnittstellen

- Schnittstellen sind standardisierte Festlegungen
 - zur Verbindung von Geräten verschiedener Hersteller
 - zum Anschluss von Geräten an Übertragungseinrichtungen
 - zum Anschluss von Übertragungseinrichtungen an Netze bestimmter Technologien
- Schnittstellen legen fest
 - Steckerkonfigurationen (physische Ausprägung, PIN-Bedeutung)
 - Codierung, Modulation
 - Schritttakterzeugung, Synchronisation
 - Datenübertragung und Fehlersicherung
- Gremien: ITU-T, EIA / TIA, IEEE

Fragen zur Bitübertragungsschicht (1/2)

- Wieso ist die PIN-Festlegung Protokollbestandteil der Ebene 1?
- Welche Übertragungsmedien können Shared Media sein?
- Was besagt das Abtasttheorem?
- Welche zwei Bandbreitenbegriffe gibt es?
- Wodurch wird die Übertragungsrate beeinflusst?
- Wie unterscheiden sich Bitrate und Baud bei der Manchester Codierung?
- Was bedeutet das Bandbreitenlängenprodukt bei Medien?

Fragen zur Bitübertragungsschicht (2/2)

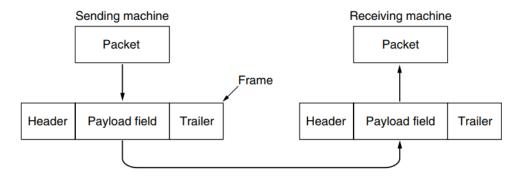
- Welche Trägermodulationsarten gibt es?
- Welche Teilschritte umfasst die Digitalisierung analoger Signale? Unterschiede synchroner und asynchroner Übertragung?
- Nennen Sie wesentliche Störeinflüsse bei elektrischen Leitern.

Sicherungsschicht (Engl.: Data Link Layer)

Vielfachzugriffsverfahren: CSMA, MACA

Fehlerkontrolle: Parity-Codes, CRC, selbstkorrigierende Codes

Aufgaben der Data Link Layer


Dedizierte Leitung	Shared Medium			
Network	Network	Vermittlungsschicht		
Detaliale	LLC	Sicherungsschicht		
Data Link	MAC			
Physical	Physical	Bitübertragungsschicht		

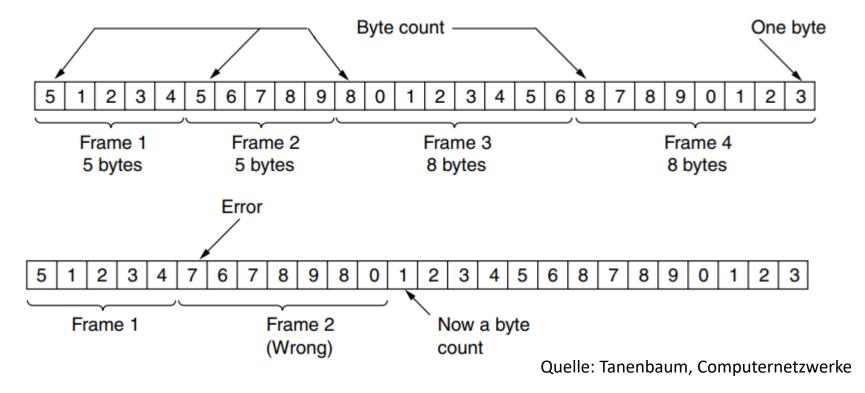
- Teilschicht 2a: Media Access Control (MAC)
 - Mehrfachzugriffsverfahren
 - Kollisionsbehandlung
- Teilschicht 2b: Logical Link Control (LLC)
 - Rahmenbildung (Framing)
 - Fehlererkennung bzw. Fehlerkorrektur

Rahmenbildung: Motivation

- Bitübertragungsschicht transferiert Bitstrom
 - Ggf. mit Redundanz bei geringer SNR
- Herausforderungen
 - Übertragungsfehler (bspw. Bitkipper)
 - Kollisionen bei Mehrfachzugriff
- Zerlegung in Rahmen (Frames) mit angehängter Checksumme im Trailer.

Quelle: Tanenbaum, Computernetzwerke

Konzepte der Rahmenbildung


Grundlegendes Problem: Synchronisation zwischen Sender und Empfänger

- Identifikation von Start / Ende eines Rahmens
- 3 grundlegende Konzepte
 - Byte count
 - Byte stuffing
 - Bit stuffing

Rahmenbildung: Byte count

- Framegröße wird im Header festgelegt
- Problematisch bei Übertragungsfehler

Rahmenbildung: Byte Stuffing

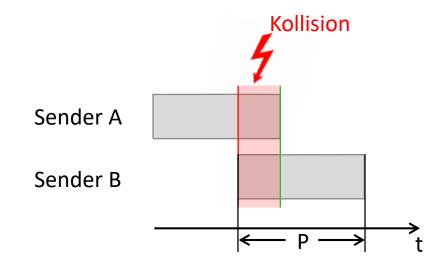
Start / Ende werden durch ein Flag Byte markiert:

- Herausforderungen
 - Flag Byte kann Teil der Nutzdaten sein (bspw. Bei Bild-/ Videodaten).
 - Lösung: Sender fügt ein zusätzliches Escape Byte (ESC) ein. Auf der Empfängerseite wird das ESC Byte wieder entfernt.
 - Hoher Overhead: Rahmengröße verdoppelt sich im Extremfall.
- Abgewandelte Form kommt beim Point-to-Point Protocol (PPP) zum Einsatz

Byte Stuffing: Beispiel

Quelle: Tanenbaum, Computernetzwerke

Rahmenbildung: Bit Stuffing


- Konzept analog zu Byte Stuffing:
- Rahmen starten/enden mit speziellem Flag Byte (0x7E)
- Sender: Nach 5 aufeinanderfolgenden Bits mit Wert "1" im Payload wird ein "0" Bit eingefügt (Escape-Bit)
- Empfänger entfernt das "0" Bit wieder, um ursprüngliche Daten wiederherzustellen.

MAC: Vielfachzugriffsverfahren

Problem

- Medium ist geteilte Resource
- Zwei (oder mehrere) potentielle Sender
- Signale von mehreren Sendern gleichzeitig: Kollision

Überblick: Vielfachzugriffsverfahren

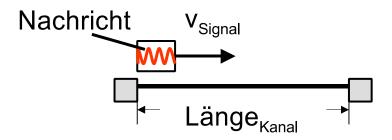
- Vielfachzugriffsverfahren: verteiltes Verfahren zur Vergabe des Kanals/Mediums
 - Vielfachzugriffsverfahren regeln den Zugriff mehrerer Teilnehmer auf ein gemeinsames Übertragungsmedium (Shared Medium)
 - Verfahren laufen in Schicht 2a (oberhalb 1, unterhalb 2b)
- Kriterien eines Zugriffsverfahrens:
 - Reservierung oder "auf gut Glück"
 - Zeitraster
 - Priorität/Fairness
 - Lastabhängigkeit
 - Durchsatz
- Beispiele für Shared Media: Lokale Netze (Ring, Bus), Funknetze (z.B. Handy), Satellitennetze

Kategorisierung: Vielfachzugriffsverfahren

- Wettbewerbsverfahren/Random Access Verfahren
 - Aloha-Verfahren (pure, slotted)
 - Carrier Sensing mit Kollisionserkennung
 - → Ethernet (802.3)
- Zuteilungsverfahren
 - Kollisionsvermeidung
 - → Wifi (802.11)
- Reservierungsverfahren
 - Fest (TDMA, FDMA, CDMA, SDMA)
 - dynamisch

Beispiel: LAN-Standard IEEE 802.x

	802.1	Schnittstellen zu höheren Diensten								
	LAN-Management, Bridges, VLAN									
2b	802.2	Logical Link Layer								
2a	802.3	802.4	802.5	802.6	802.7	802.11				
1	CSMA/ CD	Token Bus	Token Ring	DQDB MAN	Breit- band	WLAN				


Beispiele für Verfahren an der Luftschnittstelle

- WLAN: CSMA/CA, MACA, MACAW, DFWMAC2
- GSM: Mischung von FDMA (124 Frequenzkanäle) und TDMA (pro Frequenzkanal 8 Slots)
- UMTS: WCDMA (Wide Band CDMA)
- Satelliten, Funk: FDMA
- Bluetooth: Frequency Hopping mit Zeitmultiplex (Pico-Netz)

Wettbewerbsverfahren/ Random Access Verfahren

- Bei Random Access Verfahren besteht inhärent Konfliktgefahr (führt zu Interferenzen und somit Verfälschungen) durch Kollisionen. Bei stochastischen Verfahren somit drei Probleme:
 - Kanalzugang
 - Konflikterkennung
 - Konfliktbereinigung

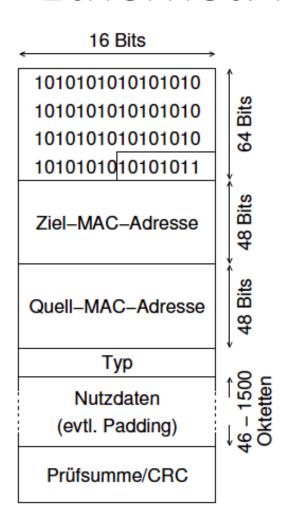
$$K = \frac{max. \ Signallaufzeit}{Nachrichten \ddot{u}bertragungszeit} = \frac{\left(\frac{Kanallange}{Signalgeschwindigkeit}\right)}{\left(\frac{Nachrichten länge}{\ddot{U}bertragungsrate}\right)}$$

CSMA (Engl. Carrier Sense Multiple Access)

Überblick CSMA

- Idee Carrier Sense Multiple Access (CSMA)
- Senken der Kollisionswahrscheinlichkeit durch vorheriges Mithören auf Sendekanal (Carrier Sensing)
 - → Macht nur Sinn, wenn Konfliktparameter K < 1.
- Behandlung von Kollisionen:
- unslotted p-persistent:
 - mit Wahrscheinlichkeit p bei freiem Kanal sofort senden
 - mit Wahrscheinlichkeit
 1-p Sendung um RTD/2
 verschieben
- unslotted nonpersistent:
 - Frei: Sofort übertragen; sonst erneuter Versuch erst nach zufälliger Zeit t

- slotted p-persistent:
 - Einteilen Zeitachse in Slots
 - Sendebeginn jeweils Slot-Grenzen
 - Verzögern um 1 Slot mit Wahrscheinlichkeit 1-p
- slotted nonpersistent:
 - Sendebeginn Slotgrenze
 - Wartezeit K Slots mit zufälligem K

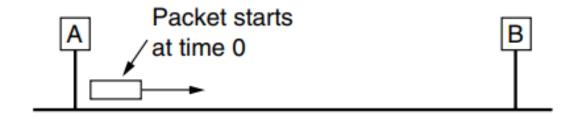


Ethernet: Überblick

- Ethernet ist die wichtigste CSMA-Variante und marktdominant bei LANs
- Spezifizert in IEEE 802.3.
- Es realisiert ein CSMA/CD-Verfahren mit der Variante 1persistent CSMA. Mit CD (Collision Detect) ist auch die Art der Kollisionserkennung festgelegt.
- Die Wartezeit bei Kollision ist durch Binary Exponential Backoff definiert

Ethernet: Rahmenaufbau

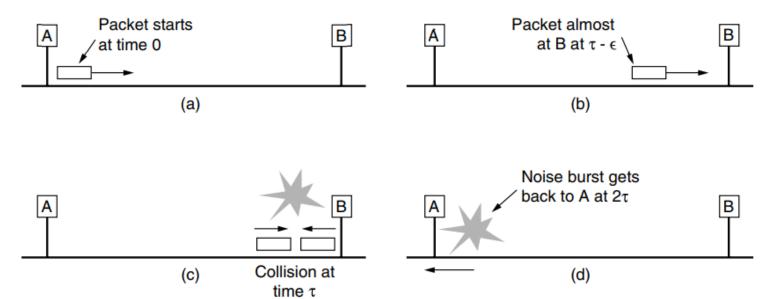
- **Präambel** (7 Bytes): je 10101010
- Start of Frame (1Byte): 10101011
- Ziel-, und Quell-MAC-Adresse (je 48 Bit): flache Adressen
- Nutzdaten
 - Ethernetframe muss min. 64 Bytes lang sein (inclusive MAC-Felder)
 - Nutzdaten (0-1500 Bytes)
 - Padding (bedarfsweise 0-46 Bytes)
- **Prüfsumme** (4Bytes): nach dem CRC-Verfahren


Minimale Nachrichtengröße

- Unterscheidung von unvollständigen, abgeschnittenen Frames (im Falle einer Kollision) von vollständigen Frames.
- Sendezeit vs. Übertragungszeit (Konfliktparameter K)
 - Vermeiden, dass ein Frame vollständig versendet ist bevor das erste Bit den Empfänger erreicht.
 - Andernfalls erhält der Sender bei einer Kollision keine rechtzeitige Rückmeldung um ein erneutes Senden des Frames zu veranlassen.

Kollisionserkennung

Frage: Wie lange braucht der Sender A, bis eine eventuelle Kollision erkannt wurde?



t₀ sei die Startzeit τ sei die Latenz von A zu B.

Kollisionserkennung

Frage: Wie lange braucht Sender A, bis eine eventuelle Kollision mindestens erkannt wurde?

Quelle: Tanenbaum, Computernetzwerke

Antwort: 2τ

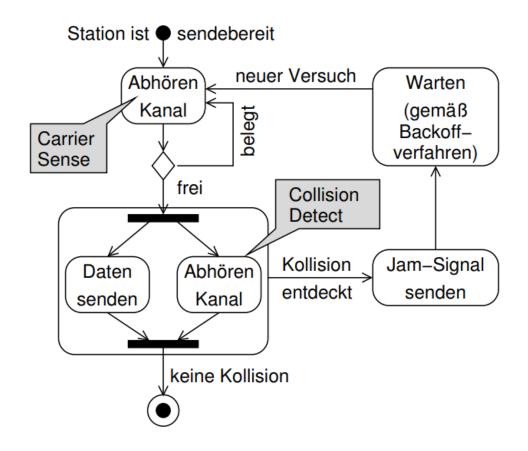
Ethernet: Rahmenlänge

- 10 Mbit/s LAN
- Max. 2500m Kabellänge
- RTD mit 4 Repeater: 50 μs

- → 1 Bit: 100 nsec
- → minimum 500 Bits
- → Für Ethernet aufgerundet auf 512 bit (64 bytes)

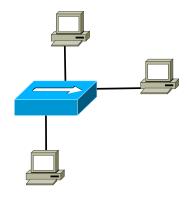
CSMA/CD: Konfliktbehandlung

Truncated Binary Exponential Backoff


- Wartezeit nach n-ten Wiederholungsversuch ist $i \cdot 2\tau$
- i ist Zufallswert einer natürlichen Zahl mit $0 \le i < (2^k 1)$
- mit $k = \min(n, 10)$

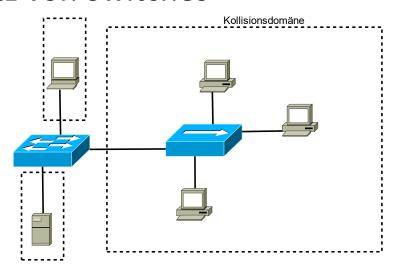
Jam-Signal

- Diameter bei Ethernet: 464 Bits → Jam-Signal: 48 Bit
- 4 6 Bytes Rauschsignal
- andere (kollidierende) Sender erkennen die Kollision elektrisch
- führt zu Fehler in Prüfsumme Rahmen wird verworfen


CSMA/CD: Ablauf

Switched Ethernet (1)

• Erste Weiterentwicklung: Einsatz von Hubs / Repeaters.

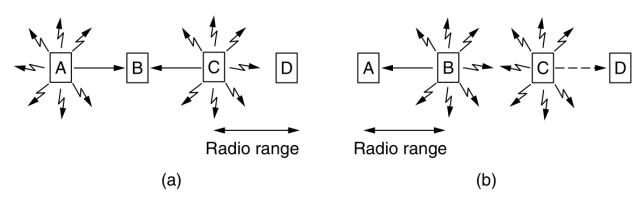


- Vorteil: Einfachere Wartung
- Nachteile
 - Immer noch eine Kollisionsdomäne.
 - Geräte teilen sich die verfügbare Kapazität

Switched Ethernet (2)

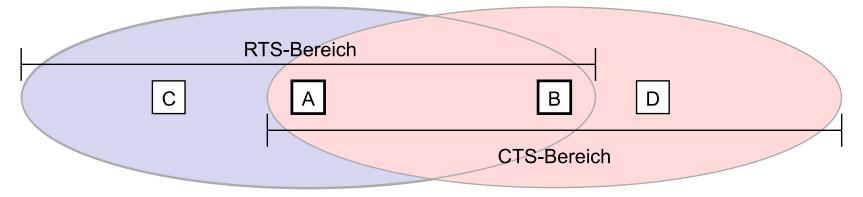
Einsatz von Switches

- Jeder Port am Switch ist eine eigene Kollisionsdomäne
- Kollisionsvermeidung durch intelligentes Zwischenspeichern von Frames im Switch (kein CSMA/CD notwendig)



MACA (Multiple Access with Collision Avoidance)

Motivation


- MACA: Multiple Access with Collision Avoidance
- Anwendung bei Funkkommunikation
- Hidden Station / Exposed Station Probleme
 - a. Manche Stationen nur in Reichweite des Senders A oder nur des Empfängers B (A sowie C sind hidden stations)
 - b. Manche Stationen interpretieren "fälschlicherweise" ein irrelevantes Signal als besetzte Leitung.

MACA: Konzeptionelle Sicht

- Kommunikation über dedizierte Signale
 - Sender: RTS (ready to send)
 - Empfänger: CTS (clear to send)
- Inhalt von RTS-Paket
 - Empfänger
 - Nachrichtenlänge

Ablauf MACAW (MACA for Wireless)

- positive Quittungen
- CSMA vor Senden des RTS
- Sicht des Senders
 - Sendebereitschaft: prüfen, ob Kanal frei ("lauschen")
 - Kanal frei: senden, RTS (engl. request to send) markiert Sendeabsicht, Länge der Nachricht sowie Empfänger
 - Quittung CTS (engl. clear to send) empfangen: Nachricht kann gesendet werden
 - Nachbarn: Empfangen RTS, leiten aus Länge der Nachricht die Dauer der Reservierung ab
- Sicht des Empfängers
 - wenn RTS korrekt empfangen: senden CTS
 - Nachbarn: Empfangen CTS, leiten aus Länge der Nachricht die Dauer der Reservierung ab

Fragen zur MAC-Teilschicht

- Begründen Sie die Notwendigkeit von Vielfachzugriffsprotokollen.
- Was versteht man unter dem Konzept einer Kollisionsdomäne?
- Wieso ist die MAC-Teilschicht unterhalb LLC-Teilschicht?
- Warum muss bei Ethernet eine untere Grenze für den kürzesten Frame festgelegt werden?
- Welche Protokollbestandteile sind für Ethernet festgelegt?
- Welche Bedeutung hat der Konfliktparameter?
- Warum kann ein reines carrier sense Verfahren nicht Kollisionen vermeiden, wenn ein hidden station problem vorliegt?

LLC-Teilschicht (Engl. Logical Link Control Sublayer)

Einordnung der LLC-Teilschicht (Schicht 2b)

 Schichtbezeichnung und Dienstschnittstellen abhängig von Szenario

Dedizierte Leitung	Shared Medium	
Network	Network	Vermittlungsschicht
Data Link	LLC	Cichorupgoobiobt
Data Link	MAC	Sicherungsschicht
Physical	Physical	Bitübertragungsschicht

Aufgaben der LLC-Teilschicht (Schicht 2b bzw. 2)

Protokollbezogen

- Bereitstellen und Steuern Layer-2-Connection (Data Link, Logical Link)
- Steuerung und Sichern des Datenaustauschs von
 - Zeichenfolgen (Blöcke) oder
 - Bitfolgen (Rahmen, Frames)

Dienstbezogen

- nach unten: Übernahme / Übergabe von Bitfolgen
- nach oben: Verdeckt Charakteristika der physik. Medien

Bit-Fehler Erkennung

Paritätsprüfung, Block Check Character (BCC), Cyclic Redundancy Check (CRC), Selbstkorrigierende Codes

Motivation

- Bei der Übertragung von binär codierten Nachrichten können Bitfehler vorkommen.
- Von besonderem Interesse:
 - Einbitfehler (engl. bit flip)
 - Burstfehler: Mehrere Fehler treten gebündelt auf.
- Der allgemeine Ansatz zur Behandlung von Bitfehlern ist das Beifügen von Prüfsummen.
- Prüfsummen können auf unterschiedliche Art und Weise berechnet werden (mit unterschiedlichen Fähigkeiten).
- Von besonderem Interesse (zur Beurteilung von Verfahren):
 - Overhead
 - Restfehlerrate (was für Fehler werden nicht erkannt?)
 - Komplexität der Berechnung (Effizienz der Implementierungen)

Einordnung

- Behandlung von Bitfehlern:
 - 1. Paritätsprüfung (Erkennung von Einbitfehlern)
 - BCC (Matrix basierte Paritätsprüfung)
 - Zyklische Redundanzprüfung (Polynom basierte Fehlererkennung)
 - 4. Selbstkorrigierende Codes (Erkennung mit Korrektur)
- Prüfsummen finden sich auch in Protokollen anderer Schichten des OSI-Modells wieder.

Paritätsprüfung

- Es wird ein einzelnes Paritätsbit an die Daten angehängt.
- Das Paritätsbit wird so gewählt, dass die Anzahl der Bits die auf 1 gesetzt sind gerade, oder ungerade wird (gerade bzw. ungerade Parität muss vereinbart sein).
- Einbitfehler sind erkennbar (aber nicht korrigierbar)
- Weitere Fehlermuster sind nur bedingt erkennbar
- Leicht zu berechnen, geringer Overhead
- Beispiel: Zeichenweise Parität bei ASCII (7-Bit-Code):

	Daten (7 Bit)	Paritätsbit	wird Übertragen
gerade Parität	1000111	0	1000111 <mark>0</mark>
ungerade Parität	1000111	1	1000111 <mark>1</mark>

BCC (Engl. Block Check Character)

- Bitstrom wird in n Blöcke (z₁,z₂,...,z_n) zu je m Bits aufgeteilt
- Jeder Block wird um ein Paritätsbit erweitert übertragen und außerdem wird ein Prüfzeichen der Länge m+1 (inklusive Paritätsbit) der BCC angehängt.
- Die Art der Parität (gerade bzw. ungerade) muss vereinbart sein.
- Das BCC wird wie folgt berechnet:

BCC: Beispiel (1)

1	1	1	0	1
0	1	0	1	0
0	0	1	1	0
0	1	0	0	1
1	1	0	0	

 Berechnung einer Paritätsmatrix mit gerader Parität. Alle Zeilen und Spalten haben gerade Anzahl an Einsen.

BCC: Beispiel (2)

1	1	1	0	1
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
1	1	0	0	

Beurteilung BCC

- Overhead: Pro n*m Nutzdatenbits müssen n+m+1
 Paritätsbits berechnet und mitübertragen werden.
- Gibt es in einer Zeile (oder Spalte) eine gerade Anzahl Bitfehler, so können diese in der Regel immer noch anhand der Parität der betroffenen Spalte (bzw. Zeile) erkannt werden.
- Daher: Die Restfehlerrate ist wesentlich geringer als bei einfacher Paritätsprüfung.

Zyklische Redundanzprüfung (CRC)

- Eine Nutzdatenbitfolge S wird als Binärpolynom aufgefasst.
- Die Prüfsumme Q, wird mit Hilfe eines vorher vereinbartem Generatorpolynom G vom Grad r berechnet: Q ist der Rest der Polynomdivision von (x^r * S)/G
- Übertragen wird U = S * 2^r XOR Q (Dies entspricht genau den Nutzdaten S gefolgt von Q, wobei Q mit führenden Nullen auf r Stellen aufgefüllt wird.)

```
Übertragungsfolge U = Sendefolge S (Nutzdaten) Prüfsumme Q (r Bits)
```

• In der Praxis kann CRC als rückgekoppelte Schieberegisterschaltung effizient in Hardware implementiert werden.

CRC: Rechenbeispiel

- Senderseite
 - Sei G = $x^5 + x^4 + x^2 + 1$ (110101)
 - Sei S = $x^9 + x^5 + x^2 + 1$ (1000100101)
 - $Q = (x^5 * S)/G = x + 1 (11) \rightarrow = 100010010100011$
- Empfängerseite
 - Empfänger berechnet U_{Empfangen}/G
 - Division mit Rest → Bitfehler in der Übertragung
 - Division ohne Rest → Übertragung fehlerfrei
 - oder Fehler ist Vielfaches von G, d.h. nicht erkennbar
- Fehlerhafte Sendung: H = U + F wo F Fehlerpolynom
- Ziel: G so wählen, dass F für gängige Fehlermuster kein Vielfaches von G ist.

CRC: Fehlererkennung

- Alle 1-Bit Fehler, falls G(X) mehr als einen Term ungleich 0 hat.
- Alle 2-Bit Fehler, falls G(X) einen Faktor mit drei oder mehr Summanden hat
- Jede ungerade Anzahl an Fehler, solange G(X) einen Faktor (X+1) hat
- Jeden zusammenhängenden Fehler (Fehlerburst), dessen Länge nicht größer als r ist.
- Einen Teil der Bursts mit r+1 Bits
- Einen Teil der Bursts mit mehr als r+1 Bits

CRC: Beispielanwendungen

Auswahl an Generatorproblemen

CRC-16	$X^{16} + X^{15} + X^2 + X^1$
CRC-CCITT	$X^{16} + X^{12} + X^5 + X^1$
CRC-32	$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$
Bluetooth	$X^8 + X^2 + X + 1$

- CRC-16 und CRC-CCITT im Wesentlichen gleich gut
 - Bitfilterlänge von maximal $(2^{15} 1 = 32767)$
 - Eingesetzt z.B. in HDLC
 - Bis zu 4095 Oktetten (Bytes) optimal geschützt.
- CRC-32
 - Einsatz in Ethernet seit 1980
 - Erkennt alle Fehler mit ungerade Anzahl an Bits
 - Erkennt alle Bursts der Länge <= 32
 - Hamming Distanz d = 4

Selbstkorrigierende Codes

- Idee: Codetabelle wird so dünn besetzt, dass Verfälschung zu unzulässiger Codierung führt. Die Fehlerlokalisierung ermöglicht Korrektur.
- Hammingabstand d von Codewörtern: Anzahl der unterschiedlichen Bits zwischen zwei Codewörter
 - → Logsches "exclusiv order" (XOR)
- Beispiel:
 - 1011001 und 0011100 haben Abstand d=3
- Hammingabstand d von Codes: Minimum der Distanzen aller Paare von Codewörtern.

Relevante Parameter

Hammingabstand eines Code: d

- Erkennung von d Fehler: d+1 Code
 - d Fehler (Bitflips) ergeben kein anderes valides Codewort
- Korrektur von d Fehler: 2d+1 Code
 - Bei d Fehler ist das ursprüngliche Codewort immer noch näher am Fehler als jedes andere Codewort.

Bsp.: Erkennung von 1 Bit Fehler

- Betrachte Codewörter n = b + r Bits (b = Daten, r = Redundanz
- es gibt 2^b Nutzzeichen sowie 2ⁿ Bitmuster
- jedes Nutzzeichen hat n Nachbarn mit Distanz 1
 - → benötigt daher n+1 Bitmuster
- Daher gilt: $(n+1)2^b \le 2^n \to (b+r+1) \le 2^r$
- Beispiel ASCII
 - für ASCII gilt $b = 7 \rightarrow r = 4$
 - Es sind 11 Bits erforderlich, um das Nutzzeichen + Redundanz zu repräsentieren
 - daher: 36% Overhead (Vergleich Paritätsbit: 12,5% Overhead)

Fragen zur LLC-Teilschicht

- Was bezeichnet den Hamming-Abstand zwischen 2 Codewörter
- Welche Auswirkung hat der Hamming-Abstand auf Fehlererkennung bzw. Fehlerkorrektur bei der Nachrichtenübertragung
- In welchen Fällen kann eine BCC (Block Chain Character) Paritätsmatrix keine Fehler erkennen?
- Welche Fehler kann CRC-32 in jedem Fall erkennen?

